Search results for "Protein immobilization"

showing 3 items of 3 documents

Configurable low-cost plotter device for fabrication of multi-color sub-cellular scale microarrays.

2014

We report on the construction and operation of a low-cost plotter for fabrication of microarrays for multiplexed single-cell analyses. The printing head consists of polymeric pyramidal pens mounted on a rotation stage installed on an aluminium frame. This construction enables printing of microarrays onto glass substrates mounted on a tilt stage, controlled by a Lab-View operated user interface. The plotter can be assembled by typical academic workshops from components of less than 15 000 Euro. The functionality of the instrument is demonstrated by printing DNA microarrays on the area of 0.5 squared centimeters using up to three different oligonucleotides. Typical feature sizes are 5 μm diam…

FabricationMaterials scienceScale (ratio)NanotechnologyMultiplexingBiomaterialsUser-Computer InterfacePlotterHumansGeneral Materials ScienceBiochipOligonucleotide Array Sequence AnalysisEGF ReceptorsEpidermal Growth FactorOligonucleotideDNA-directed protein immobilization EGF receptors device automation multiplexed patterns polymer pen lithographyGeneral ChemistryMicrofluidic Analytical TechniquesErbB ReceptorsTissue Array AnalysisCosts and Cost AnalysisMCF-7 CellsPrintingDNA microarraySingle-Cell AnalysisBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Fabrication and characterisation of ZnO nanostructures: from nanoscale building blocks to hybrid nanomaterials - towards emerging technologies in sen…

2012

Metal oxide nanostructures characterized by multiple morphologies and structures are at the forefront of applications driven nanotechnology research. In particular, they represent a versatile solution for performance enhancement and applications in multifunctional devices and offer distinct advantages over their bulk counterparts. The current state in ZnO nanomaterials research and its impact in nanotechnology and modern engineering are discussed through the lens of con-tinuing technological advances in synthetic techniques allowing to obtain the material with predefined specific set of criteria including size, functionality, and uniqueness. Aim of this research activity is fabrication and …

Zinc oxide MOCVD Chemical Bath Deposition Electrospinning Nanosphere Colloidal Lithography nanorods FRAP sensing protein immobilizationArea 03 - Scienze chimicheZnO colloidal nanolithography MOCVD sensing chemical bath deposition
researchProduct

Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered beta-galactosidase

2018

Enzymatically-active bacterial cellulose (BC) was prepared by non-covalent immobilization of a hybrid enzyme composed by a β-galactosidase from Thermotoga maritima (TmLac) and a carbohydrate binding module (CBM2) from Pyrococcus furiosus. TmLac-CBM2 protein was bound to BC, with higher affinity at pH 6.5 than at pH 8.5 and with high specificity compared to the non-engineered enzyme. Both hydrated (HBC) and freeze-dried (DBC) bacterial cellulose showed equivalent enzyme binding efficiencies. Initial reaction rate of HBC-bound enzyme was higher than DBC-bound and both of them were lower than the free enzyme. However, enzyme performance was similar in all three cases for the hydrolysis of 5% l…

0301 basic medicineImmobilized enzyme02 engineering and technologyProtein EngineeringBiochemistryBacterial cellulose03 medical and health sciencesHydrolysischemistry.chemical_compoundCarbohydrate binding moduleStructural BiologyEnzyme StabilityThermotoga maritimaCelluloseMolecular BiologyLactasechemistry.chemical_classificationbiologyGluconacetobacter xylinusHydrolysisMembranes ArtificialGeneral Medicine021001 nanoscience & nanotechnologybiology.organism_classificationEnzymes Immobilizedbeta-GalactosidaseEnzyme binding030104 developmental biologyEnzymeProtein immobilizationchemistryBiochemistryBacterial celluloseThermotoga maritimaPyrococcus furiosusCarbohydrate-binding module0210 nano-technology
researchProduct